Rule of 72
\[(1+k\%)^{x}=2\]
\[x=\log_{1+k\%} 2=\frac{\ln2}{\ln(1+k\%)}\]
using L'Hospital's Rule:
\[\lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}\]
so, \[\lim _{x\to 0}{\frac {x} {\ln{1+x}}}=\lim _{x\to 0}{\frac {1}{\frac{1}{1+x}}}=\lim _{x\to0}{1+x}=1\]
so, \[\frac{\ln2}{\ln(1+k\%)}\approx\frac{\ln2}{k\%}=\frac{100\times\ln2}{k}\approx\frac{69.3}{k}\]